A ZFC Dowker space in אω+1: an application of pcf theory to topology

نویسندگان

  • Menachem Kojman
  • Saharon Shelah
چکیده

The existence of an אω+1-Dowker space is proved in ZFC using pcf theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D ec 1 99 5 A ZFC Dowker space in א ω + 1 : an application of pcf theory to topology

The existence of a Dowker space of cardinality אω+1 and weight אω+1 is proved in ZFC using pcf theory.

متن کامل

Violating the Singular Cardinals Hypothesis Without

We extend a transitive model V of ZFC +GCH cardinal preservingly to a model N of ZF + “GCH holds below אω” + “there is a surjection from the power set of אω onto λ” where λ is an arbitrarily high fixed cardinal in V . The construction can roughly be described as follows: add אn+1 many Cohen subsets of אn+1 for every n < ω , and adjoin λ many subsets of אω which are unions of ω-sequences of thos...

متن کامل

5 D ec 1 99 5 The A , B , C of pcf : a companion to pcf theory , part

This paper is intended to assist the reader learn, or even better, teach a course in pcf theory. Pcf theory can be described as the journey from the function i — the second letter of the Hebrew alphabet — to the function א, the first letter. For English speaking readers the fewer the Hebrew letters the better, of course; but during 1994-95 it seemed that for a group of 6 post doctoral students ...

متن کامل

Borel Extensions of Baire Measures in Zfc

We prove: (1) Every Baire measure on the Kojman-Shelah Dowker space [10] admits a Borel extension. (2) If the continuum is not a real-valued measurable cardinal then every Baire measure on the M. E. Rudin Dowker space [16] admits a Borel extension. Consequently, Balogh’s space [3] remains as the only candidate to be a ZFC counterexample to the measure extension problem of the three presently kn...

متن کامل

Embedding Cohen algebras using pcf theory

Using a theorem from pcf theory, we show that for any singular cardinal ν, the product of the Cohen forcing notions on κ, κ < ν adds a generic for the Cohen forcing notion on ν. The following question (problem 5.1 in Miller’s list [Mi91]) is attributed to Rene David and Sy Friedman: Does the product of the forcing notions n2 add a generic for the forcing ω+12? We show here that the answer is ye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998